ASSOUAD NAGATA DIMENSION ON THE INTEGERS

1. BAsic FACTS AND DEFINITIONS

Definition 1.1. A metric space X is said to be of Assouad-Nagata dimension < n,
i.e. dimanyX < n, iff there exists a constant ¢ so that V r > 0 we can construct
a cover U = {Uy,Uy,...,U,} of X such that each U; is r-disjoint and uniformly
bounded by cr.

Definition 1.2. A metric space X has Assouad-Nagata dimension = n if
dimanX < nistrue and dimganX <n — 1 is false.

Remark 1.3. Three points:
(i) Each U; is a family of sets.
(ii) r-disjoint means that any two disjoint sets in U; have distance at least r.
(iii) A family of sets is called uniformly bounded by D if every set of the family
has diameter less than D

Definition 1.4. For different values of r the map D? : R™ — R* defined by
D?(r) = cr which gives the bound of the diameters is formally called an n-
dimensional control function. In Assouad Nagata dimension the n-dimensional
control function is a dilation.

Definition 1.5. A bi-Lipschitz function f : (X,dx) — (Y, dy) satisfies the prop-
erty

pdx (z,y) < dy (f(z), f(y)) < Mdx(z,y)
for some p, A > 0.

Proposition 1.6. Suppose that X andY are metric spaces and that dimanX < n.
If f: X —Y is bi-Lipschitz and onto then dimanY <n.

Let U a covering of X. Use f(U) to create a covering of Y.
Remark 1.7. dimay is bi-Lipschitz invariant.

Proposition 1.8. For a metric space (X,d), the following are equivalent:
(i) dimanX <n
(ii) 3 ¢y such thatV r >0, 3 a cover U, of X with r-multiplicity at most n+ 1
and mesh at most cqr.
(i) 3 co > 0 such that ¥r > 0, 3 a cover V. of X with multiplicity at most
n+ 1, mesh at most cor and Lebesque number at least 7.

For the proof of the above see [7]

Definition 1.9.
- mesh(U,) = sup{diam(A)|A € Ur}
- maltiplicity(U,) = maz{#Ai € U,, such that N; A; # 0}
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2 ASSOUAD NAGATA DIMENSION ON THE INTEGERS
- r —multiplicity(U,) = maz{# A, intersecting a ball, B,.(z)}
- Lebesque number(U,) = inf{sup{dist(z,X —U):U € U,}:x € X}
Proposition 1.10. If X = AU B, then dimanX < max{dimanA,dimanB}.
The proof is really straight forward.

Definition 1.11. A metric space X is said to be of asymptotic Assouad-Nagata
dimension n, i.e. asdimanyX = n, if n is the smallest natural number for which
3 ¢,d constants such that Vr > 0 there exists a cover U = {Ag, A1,..., A} of X
such that each A; is a family of r-disjoint sets and diam(A4;.) < cr +d,

j
Remark 1.12. In asymptotic Assouad-Nagata dimension the dimension control
function is linear and not just a dilation.

Proposition 1.13. For a discrete metric space X, asdiman X = dimanyX. In par-
ticular, if X is a finitely generated group with the word metric, then asdimanyX =
dimANX.

For a detailed proof of the above see [5]

2. FINITELY GENERATED GROUPS AS METRIC SPACES

Definition 2.1. Let G =< S|R >, |S| < co. Define the following word norm on
G:

[|z]| = min{l(w) z=w=s;5i...5, s5i €S}
where k = [(w) is the length of the word w.

Definition 2.2. Define the word metric on G by d,(z,y) = ||z~ 1y||.
Proposition 2.3. d,, is left G-invariant, d,(x,y) = dw(gz, gy).
Proof.

dw(gz,9y) = [I(92) " gyll =l g7 gyll = [la7"yl| = duw(z,y)

Proposition 2.4. (G,d,,) is a discrete metric space.

Proof. d(z,y) € Z. O
Corollary 2.5. With d,, asdimanG = dimanG.

Proposition 2.6. If G is finitely generated and diam(G) < M then G is finite.
Proof. For any g € G, ||g|| < M. If |S| = k then |G| < (2k)M. O

Proposition 2.7. If G is finitely generated and diam(G) < M then asdimanG =
0.

Proof. Let Uy = G. Consider ¢c =1, d = M. Then for all r > 0, Uy is a cover of G,
Uy is trivially r-disjoint, and diam(Uy) < D2 (r) = 1r + M. O

Corollary 2.8. If G is finitely generated and diam(G) < M then dimanG = 0.
See 1.13.

Proposition 2.9. If G is finite then asdimanyG = dimanG = 0.
Proof. Let Ag = G. O
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Proposition 2.10. If asdimanG =0, and G finitely generated, then G is finite.

Proof. Let r > 1 and consider the appropriate covering. Let G C Uy = {Ao, A1, ...}.
|Ag| = k < oo because, diam(Ap) < cl+d = c+d. As a result, if Ag D G, then
G is finite, as desired. Assuming that this is not the case, there exist x € Ay and
s € SUS™! such that s € Ay. If s € A,,, then we have that Ay and A, are at
most 1-disjoint, contradiction. Thus, Uy = {Ap} and G is finite. O
Definition 2.11. A map | - ||¢ : G — R is said to be a proper norm if it satisfies
the following conditions:

i) |lglle = 0 if and only if g is the neutral element in G.

i) [lgllc = llg~" |G for every g € G.

i) Jlg- hllo < lglle + Ikl for all g,h € G
iv) For every k > 0 the number of elements in G such that ||g||¢ < k is finite.

Proposition 2.12. Suppose G is an infinite, finitely generated group with a proper
norm. Consider d : G x G — R the induced metric. Then asdiman(G,d) > 0.

Proof. Assume not. Let
k =min{||si|[;s; € SUS'}

Let r = k + 1. Then there exists a cover of G containing only one family of sets,
= {A}, with A = {A;, As,...}. Suppose A; D G for some i. Then diam(G) <
diam(A;) < D. Since G is discrete G has to be finite. Contradiction. Thus G is
not fully contained in any of the A;’s. In particular G is not contained in A;. So
there exists some z € A; with zs € A; where s € (SUS™!). Then, if xs € 4;, 4;
and A; are at most k-disjoint, and so they are not r-disjoint. Contradiction. O

Remark 2.13. Since Z =< 1 > is an infinite, free group, with one generator,
from the proposition above we have that asdiman(Z,d,,) # 0. Further, we would
like to know precisely the asdimanZ. That result is an immediate corollary of the
following theorem.

Theorem 2.14. If T is a tree then asdimanT < 1.

Proof. Fix e to be the origin of the tree. Let d > 0. Consider Ay, = {z € T : kd <
d(xz,e) < (k+ 1)d} the “Annulus” of radius (kd, (k + 1)d) for all k¥ € N Consider
the Gromov product on the tree with e as base point:

(ely) = 5 (d(, ) + d(y,c) — d(z,)

Define the relation: .
v~y = (aly) 2 (k- )
Recall that the Gromov product on the tree satisfies the relation:
(zly) = min{(z|2), (y[2)}
since the tree is 0-hyperbolic. This proves that the relation is transitive. The

other two properties are trivial thus we have an equivalence relation. Let U; j the
equivalence classes in A;. Name:

Uy = {Ui,k,i € Iy, k € Neven}
Uy {Uj)k,j S Jk,k} S Nodd}
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These families are d-disjoined. We will prove it for i, and the proof is similar
for U,. Let Uy i, Ua,; be two sets of U,. If k # [ then clearly
d(Ul,lw U27l) > d(Ak,Al) = |k — l|d

and since k # [ we have |k — | > 1 since both are integers. Thus d(Uy x,Us,;) > d.
If & = [ then since U; ;, and Uy, are different components of the relation we have
the following: For every « € Uy and y € Usy (z]y) < (k — 3)d) thus

—2(z|ly) > —2kd + d
S0:

d(z,y) d(z,e) +d(y,e) — 2(zly)

kd + kd — 2kd + d

= d
This proves that Uy, and U, are d-disjoined. They are also 3d-bounded. Let
z,y € Urg. Then (zly) > (k — 3)d = —2(zly) < —2kd + d but then d(z,y) =
d(z,e) +d(e,y) — 2(zly) < (k+1)d + (k+ 1)d — 2kd + d = 3d. Clearly the two
families cover the tree so from the definition of the Assouad-Nagata dimension we
have that asdimany < 1.

V

Corollary 2.15. With d,,, asdimanZ =1

Proof. By the previous proposition, asdiman(Z,d,) > 1 and by our theorem,
asdiman(Z,dy) <1 so asdiman(Z,d,) = 1. O

3. MONOTONE NORMS ON Z

Remark 3.1. Thus far, we have restricted our investigation to the norm that is
most natural to apply to finitely generated groups. However, this restriction has
been self-imposed and there is no technical reason to avoid other types of norms.
We now generalize our results for proper, monotone norms.

Lemma 3.2. If p: R — R* is an increasing function then Bi(z,p(t)) = Ba(z,t)
forallz € R and t € R where By(z,p(t)) = {y € Z : p(x —y) < p(r)} and
By(z,t)={y € Z: |z —y| <r}.

Proof. Notice that y € Bj(x,p(r)) < p(x —y) < p(r). Since p is increasing we get
plx—y) <p(r)s |z —y| <r. Clearly |x —y| <r <y € Bs(z,r). Combining the
above we have the wanted inclusions.

O
Lemma 3.3. Ifp: R — R7 is increasing then the families:
Yo = {Bi(4kt,p(t)) : k € Z}
= {Bi((4k+2)t,p(t)) : k € Z}

are p(t)-disjoined and 2p(t)-bounded, where Bi(x,s) as the previous lemma. Fi-
nally, they form a cover of Z.

Proof. From the previous lemma we have that:
Uy = {BQ(4]4)t,t) 1k € Z}
U = {BQ((4k + 2)t7t) 1k € Z}
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Clearly o and $; cover Z. Given a € Z, there exists an integer k such that
4kt < a < 4(k+1)t. Then, either 4kt < a < 4kt+t and a € By (4kt, t), (4dk+2)t—t <
a < (4k +2)t +t and a € Bo((4dk + 2)t,t) or 4(k + 1)t —t < a < 4(k + 1)t so
a € Ba(4(k + 1)t,t).

Also they are 2p(t)-bounded since:

diam(B1(4kt,p(t))) < 2p(t)

Finally it is easy to show that {y and 4; are p(¢)-disjoined. We will prove it for i,
and the proof is the same for ;. Let By (4k1t,p(t)) and By (4kat, p(t)) with ky # ks
such that they are not p(t)-disjoined. Then, since both of them are compact, there
exist x € By(4kit,p(t)) and y € Bi(4kat,p(t)) such that p(|z —y|) < p(t). Since
p is increasing we get |z — y| < ¢. But then

|4k1t — 4dkot| < [Ak1t — x| + |z — y| + |y — 4kot] (A)
Since x € Bi(4kit,p(t)) we get x € Bo(4kit,t) and thus |z — 4kt < t. Similarly
ly — 4kot| < t. Thus (A) becomes:
|4kt — Akot| < 3t

which leads to |k — ko| < %. Since k1, ko € Z we have k1 — ks = 0 and thus k1 = ko
which is a contradiction. Thus g is p(t)-disjoined.
(I

Proposition 3.4. Suppose p : R — RT is an increasing, proper, non-bounded
norm. Consider the induced metric d : Z x Z — R :

d(z,y) = p(lx —yl)
Then asdiman(Z,d) =1

Proof. Let r > 0. Since p is not bounded there exists an a € Z such that p(a—1) <
r and p(a) > r. Consider the two families

g = {Bi(4ka,p(a)) : k € Z}
= {Bi((4k +2)a,p(a)) : k € Z}

From the previous lemma we have that the iy, 3l; are a covering of Z. Also they
are p(a)-disjoined. Since p(a) > r they are also r-disjoined. Finally they are 2p(a)-
bounded. Notice that

2p(a) < 2(pla— 1)+ p(1)) < 2pla — 1)+ 2p(1) < 2r + 2p(1)

name ¢ = 2, d = 2p(1). Then the families are ¢r + d disjoined. Since r was
chosen arbitrarily and ¢, d are constants from the definition of asymptotic Assouad
- Nagata dimension we have asdiman (Z,d) < 1.
From a previous proposition([2.12]) asdiman(Z,d) > 1 which concludes the
proof.
O

Proposition 3.5. Suppose that p : R — RY is a decreasing norm. Then the
induced metric on Z is not proper.

Proof. Suppose that the induced metric was proper. Consider the ball B(x, p(r)) =
{y € Z: p(xz —y) < p(r)}. Since p is decreasing we have that B(z,p(r)) 2 A =
{y € Z:|z—y| >r} But Bi(z,p(r)) is compact. Since it is a metric space
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Bi(x,p(r)) is bounded and thus finite since the metric is proper and Z is discrete.
On the other hand A is clearly infinite. Contradiction. O

Remark 3.6. Since we only deal with proper norms we can now say that our norm
is monotone and mean that it is increasing.

Corollary 3.7. Suppose that p: R — R is a norm which is constant in Z (and 0
at 0). Then the induced metric is not proper.

Proof. Let p(x) = d for all  # 0 in Z. Then the ball B(0,2d) = Z, is infinite and
thus the norm cannot be proper. O

(1
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