ASSOUAD NAGATA DIMENSION ON THE INTEGERS

1. BASIC FACTS AND DEFINITIONS

Definition 1.1. A metric space X is said to be of Assound-Nagata dimension $\leq n$, i.e. $\dim_{AN}X \leq n$, iff there exists a constant c so that $\forall r > 0$ we can construct a cover $\mathfrak{U} = \{U_0, U_1, \ldots, U_n\}$ of X such that each U_i is r-disjoint and uniformly bounded by cr.

Definition 1.2. A metric space X has Assound-Nagata dimension = n if $dim_{AN}X \leq n$ is true and $dim_{AN}X \leq n-1$ is false.

Remark 1.3. Three points:

- (i) Each U_i is a family of sets.
- (ii) r-disjoint means that any two disjoint sets in U_i have distance at least r.
- (iii) A family of sets is called uniformly bounded by D if every set of the family has diameter less than D

Definition 1.4. For different values of r the map $D_x^n : \mathbb{R}^+ \to \mathbb{R}^+$ defined by $D_x^n(r) = cr$ which gives the bound of the diameters is formally called an *n*-dimensional control function. In Assouad Nagata dimension the *n*-dimensional control function is a dilation.

Definition 1.5. A *bi-Lipschitz* function $f : (X, d_X) \to (Y, d_Y)$ satisfies the property

$$\mu d_X(x,y) \le d_Y(f(x), f(y)) \le \lambda d_X(x,y)$$

for some $\mu, \lambda > 0$.

Proposition 1.6. Suppose that X and Y are metric spaces and that $\dim_{AN} X \leq n$. If $f: X \to Y$ is bi-Lipschitz and onto then $\dim_{AN} Y \leq n$.

Let U a covering of X. Use f(U) to create a covering of Y.

Remark 1.7. dim_{AN} is bi-Lipschitz invariant.

Proposition 1.8. For a metric space (X, d), the following are equivalent:

- (i) $dim_{AN}X \leq n$
- (ii) $\exists c_1 \text{ such that } \forall r > 0, \exists a \text{ cover } U_r \text{ of } X \text{ with } r\text{-multiplicity at most } n+1 and mesh at most } c_1r$.
- (iii) $\exists c_2 > 0$ such that $\forall r > 0$, $\exists a \text{ cover } V_r \text{ of } X$ with multiplicity at most n+1, mesh at most c_2r and Lebesque number at least r.

For the proof of the above see [7]

Definition 1.9.

- $mesh(U_r) = sup\{diam(A)|A \in U_R\}$
- $multiplicity(U_r) = max\{\#Ai \in U_r, \text{ such that } \cap_i A_i \neq \emptyset\}$

Date: April 1, 2008.

Key words and phrases. Assound-Nagata dimension.

- $r multiplicity(U_r) = max\{\#A_i \text{ intersecting a ball}, B_r(x)\}$
- Lebesque number $(U_r) = inf\{sup\{dist(x, X U) : U \in U_r\} : x \in X\}$

Proposition 1.10. If $X = A \cup B$, then $dim_{AN}X \le max\{dim_{AN}A, dim_{AN}B\}$.

The proof is really straight forward.

Definition 1.11. A metric space X is said to be of asymptotic Assound-Nagata dimension n, i.e. $asdim_{AN}X = n$, if n is the smallest natural number for which $\exists c, d \text{ constants such that } \forall r > 0$ there exists a cover $U = \{A_0, A_1, \ldots, A_n\}$ of X such that each A_i is a family of r-disjoint sets and diam $(A_{i_i}) \leq cr + d$,

Remark 1.12. In asymptotic Assound-Nagata dimension the dimension control function is linear and not just a dilation.

Proposition 1.13. For a discrete metric space X, $asdim_{AN}X = dim_{AN}X$. In particular, if X is a finitely generated group with the word metric, then $asdim_{AN}X = dim_{AN}X$.

For a detailed proof of the above see [5]

2. FINITELY GENERATED GROUPS AS METRIC SPACES

Definition 2.1. Let $G = \langle S|R \rangle$, $|S| < \infty$. Define the following word norm on G:

$$||x|| = \min\{l(w) \mid x = w = s_{i_1}s_{i_2}\dots s_{i_k} \mid s_{i_j} \in S\}$$

where k = l(w) is the length of the word w.

Definition 2.2. Define the word metric on G by $d_w(x, y) = ||x^{-1}y||$.

Proposition 2.3. d_w is left *G*-invariant, $d_w(x,y) = d_w(gx,gy)$.

Proof.

$$d_w(gx,gy) = ||(gx)^{-1}gy|| = ||x^{-1}g^{-1}gy|| = ||x^{-1}y|| = d_w(x,y)$$

Proposition 2.4. (G, d_w) is a discrete metric space.

Proof. $d_w(x,y) \in \mathbb{Z}$.

Corollary 2.5. With d_w , $asdim_{AN}G = dim_{AN}G$.

Proposition 2.6. If G is finitely generated and diam(G) < M then G is finite.

Proof. For any $g \in G$, $||g|| \leq M$. If |S| = k then $|G| \leq (2k)^M$.

Proposition 2.7. If G is finitely generated and diam(G) < M then $asdim_{AN}G = 0$.

Proof. Let $U_0 = G$. Consider c = 1, d = M. Then for all r > 0, U_0 is a cover of G, U_0 is trivially r-disjoint, and $diam(U_0) \leq D_x^n(r) = 1r + M$.

Corollary 2.8. If G is finitely generated and diam(G) < M then $dim_{AN}G = 0$. See 1.13.

Proposition 2.9. If G is finite then $asdim_{AN}G = dim_{AN}G = 0$.

Proof. Let $A_0 = G$.

Proposition 2.10. If $asdim_{AN}G = 0$, and G finitely generated, then G is finite.

Proof. Let $r \geq 1$ and consider the appropriate covering. Let $G \subset U_0 = \{A_0, A_1, \ldots\}$. $|A_0| = k < \infty$ because, $diam(A_0) \leq c1 + d = c + d$. As a result, if $A_0 \supset G$, then G is finite, as desired. Assuming that this is not the case, there exist $x \in A_0$ and $s \in S \cup S^{-1}$ such that $xs \notin A_0$. If $xs \in A_n$, then we have that A_0 and A_n are at most 1-disjoint, contradiction. Thus, $U_0 = \{A_0\}$ and G is finite. \Box

Definition 2.11. A map $\|\cdot\|_G : G \to \mathbb{R}$ is said to be a *proper norm* if it satisfies the following conditions:

- i) $||g||_G = 0$ if and only if g is the neutral element in G.
- ii) $||g||_G = ||g^{-1}||_G$ for every $g \in G$.
- iii) $\|g \cdot h\|_G \le \|g\|_G + \|h\|_G$ for all $g, h \in G$
- iv) For every k > 0 the number of elements in G such that $||g||_G \le k$ is finite.

Proposition 2.12. Suppose G is an infinite, finitely generated group with a proper norm. Consider $d: G \times G \to \mathbb{R}^+$ the induced metric. Then $asdim_{AN}(G, d) > 0$.

Proof. Assume not. Let

$$k = \min\{||s_i||; s_i \in S \cup S^{-1}\}$$

Let r = k + 1. Then there exists a cover of G containing only one family of sets, $\mathfrak{U} = \{A\}$, with $A = \{A_1, A_2, \ldots\}$. Suppose $A_i \supset G$ for some i. Then $diam(G) \leq diam(A_i) \leq D$. Since G is discrete G has to be finite. Contradiction. Thus G is not fully contained in any of the A_i 's. In particular G is not contained in A_1 . So there exists some $x \in A_1$ with $xs \notin A_1$ where $s \in (S \cup S^{-1})$. Then, if $xs \in A_j$, A_1 and A_j are at most k-disjoint, and so they are not r-disjoint. Contradiction. \Box

Remark 2.13. Since $\mathbb{Z} = \langle 1 \rangle$ is an infinite, free group, with one generator, from the proposition above we have that $asdim_{AN}(\mathbb{Z}, d_w) \neq 0$. Further, we would like to know precisely the $asdim_{AN}\mathbb{Z}$. That result is an immediate corollary of the following theorem.

Theorem 2.14. If T is a tree then $asdim_{AN}T \leq 1$.

Proof. Fix e to be the origin of the tree. Let d > 0. Consider $A_k = \{x \in T : kd \le d(x, e) < (k+1)d\}$ the "Annulus" of radius (kd, (k+1)d) for all $k \in \mathbb{N}$ Consider the Gromov product on the tree with e as base point:

$$(x|y) = \frac{1}{2}(d(x,e) + d(y,e) - d(x,y))$$

Define the relation:

$$x \sim y \iff (x|y) \ge (k - \frac{1}{2})d$$

Recall that the Gromov product on the tree satisfies the relation:

$$(x|y) \ge \min\{(x|z), (y|z)\}$$

since the tree is 0-hyperbolic. This proves that the relation is transitive. The other two properties are trivial thus we have an equivalence relation. Let $U_{i,k}$ the equivalence classes in A_k . Name:

$$\begin{aligned} \mathfrak{U}_{\mathbf{o}} &= \{ U_{i,k}, i \in I_k, k \in \mathbb{N} \text{ even} \} \\ \mathfrak{U}_{\mathbf{1}} &= \{ U_{j,k}, j \in J_k, k \in \mathbb{N} \text{ odd} \} \end{aligned}$$

These families are *d*-disjoined. We will prove it for \mathfrak{U}_{0} and the proof is similar for $\mathfrak{U}_{1,k}$, $U_{2,l}$ be two sets of \mathfrak{U}_{0} . If $k \neq l$ then clearly

$$d(U_{1,k}, U_{2,l}) \ge d(A_k, A_l) = |k - l|d$$

and since $k \neq l$ we have $|k - l| \geq 1$ since both are integers. Thus $d(U_{1,k}, U_{2,l}) \geq d$. If k = l then since $U_{1,k}$ and $U_{2,l}$ are different components of the relation we have the following: For every $x \in U_{1,k}$ and $y \in U_{2,l}$ $(x|y) < (k - \frac{1}{2})d$ thus

$$-2(x|y) > -2kd + c$$

so:

$$d(x,y) = d(x,e) + d(y,e) - 2(x|y)$$

> $kd + kd - 2kd + d$
= d

This proves that $U_{1,k}$ and $U_{2,l}$ are d-disjoined. They are also 3d-bounded. Let $x, y \in U_{1,k}$. Then $(x|y) \ge (k - \frac{1}{2})d \Rightarrow -2(x|y) \le -2kd + d$ but then $d(x, y) = d(x, e) + d(e, y) - 2(x|y) \le (k + 1)d + (k + 1)d - 2kd + d = 3d$. Clearly the two families cover the tree so from the definition of the Assound-Nagata dimension we have that $asdim_{AN} \le 1$.

Corollary 2.15. With d_w , $asdim_{AN}\mathbb{Z} = 1$

Proof. By the previous proposition, $asdim_{AN}(\mathbb{Z}, d_w) \geq 1$ and by our theorem, $asdim_{AN}(\mathbb{Z}, d_w) \leq 1$ so $asdim_{AN}(\mathbb{Z}, d_w) = 1$.

3. Monotone norms on $\mathbb Z$

Remark 3.1. Thus far, we have restricted our investigation to the norm that is most natural to apply to finitely generated groups. However, this restriction has been self-imposed and there is no technical reason to avoid other types of norms. We now generalize our results for proper, monotone norms.

Lemma 3.2. If $p : \mathbb{R} \to \mathbb{R}^+$ is an increasing function then $B_1(x, p(t)) = B_2(x, t)$ for all $x \in \mathbb{R}$ and $t \in \mathbb{R}^+$ where $B_1(x, p(t)) = \{y \in \mathbb{Z} : p(x - y) \leq p(r)\}$ and $B_2(x, t) = \{y \in \mathbb{Z} : |x - y| \leq r\}.$

Proof. Notice that $y \in B_1(x, p(r)) \Leftrightarrow p(x - y) \leq p(r)$. Since p is increasing we get $p(x - y) \leq p(r) \Leftrightarrow |x - y| \leq r$. Clearly $|x - y| \leq r \Leftrightarrow y \in B_2(x, r)$. Combining the above we have the wanted inclusions.

Lemma 3.3. If $p : \mathbb{R} \to \mathbb{R}^+$ is increasing then the families:

$$\begin{aligned} \mathfrak{U}_0 &= \{B_1(4kt, p(t)) : k \in \mathbb{Z}\} \\ \mathfrak{U}_1 &= \{B_1((4k+2)t, p(t)) : k \in \mathbb{Z}\} \end{aligned}$$

are p(t)-disjoined and 2p(t)-bounded, where $B_1(x,s)$ as the previous lemma. Finally, they form a cover of \mathbb{Z} .

Proof. From the previous lemma we have that:

$$\begin{aligned} \mathfrak{U}_0 &= \{B_2(4kt,t) : k \in \mathbb{Z}\}\\ \mathfrak{U}_1 &= \{B_2((4k+2)t,t) : k \in \mathbb{Z}\} \end{aligned}$$

Clearly \mathfrak{U}_0 and \mathfrak{U}_1 cover \mathbb{Z} . Given $a \in \mathbb{Z}$, there exists an integer k such that $4kt \leq a < 4(k+1)t$. Then, either $4kt \leq a < 4kt+t$ and $a \in B_2(4kt,t), (4k+2)t-t \leq a < (4k+2)t+t$ and $a \in B_2((4k+2)t,t)$ or $4(k+1)t-t \leq a < 4(k+1)t$ so $a \in B_2(4(k+1)t,t)$.

Also they are 2p(t)-bounded since:

 $diam(B_1(4kt, p(t))) \le 2p(t)$

Finally it is easy to show that \mathfrak{U}_0 and \mathfrak{U}_1 are p(t)-disjoined. We will prove it for \mathfrak{U}_0 and the proof is the same for \mathfrak{U}_1 . Let $B_1(4k_1t, p(t))$ and $B_1(4k_2t, p(t))$ with $k_1 \neq k_2$ such that they are not p(t)-disjoined. Then, since both of them are compact, there exist $x \in B_1(4k_1t, p(t))$ and $y \in B_1(4k_2t, p(t))$ such that p(|x - y|) < p(t). Since p is increasing we get |x - y| < t. But then

$$|4k_1t - 4k_2t| \le |4k_1t - x| + |x - y| + |y - 4k_2t|$$
 (A)

Since $x \in B_1(4k_1t, p(t))$ we get $x \in B_2(4k_1t, t)$ and thus $|x - 4k_1t| \le t$. Similarly $|y - 4k_2t| \le t$. Thus (A) becomes:

$$|4k_1t - 4k_2t| \le 3t$$

which leads to $|k_1 - k_2| \leq \frac{3}{4}$. Since $k_1, k_2 \in \mathbb{Z}$ we have $k_1 - k_2 = 0$ and thus $k_1 = k_2$ which is a contradiction. Thus \mathfrak{U}_0 is p(t)-disjoined.

Proposition 3.4. Suppose $p : \mathbb{R} \to \mathbb{R}^+$ is an increasing, proper, non-bounded norm. Consider the induced metric $d : \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}^+$:

$$d(x,y) = p(|x-y|)$$

Then $asdim_{AN}(\mathbb{Z}, d) = 1$

Proof. Let r > 0. Since p is not bounded there exists an $a \in \mathbb{Z}$ such that $p(a-1) \leq r$ and $p(a) \geq r$. Consider the two families

$$\mathfrak{U}_{0} = \{ B_{1}(4ka, p(a)) : k \in \mathbb{Z} \}$$

$$\mathfrak{U}_{1} = \{ B_{1}((4k+2)a, p(a)) : k \in \mathbb{Z} \}$$

From the previous lemma we have that the $\mathfrak{U}_0, \mathfrak{U}_1$ are a covering of \mathbb{Z} . Also they are p(a)-disjoined. Since $p(a) \geq r$ they are also r-disjoined. Finally they are 2p(a)-bounded. Notice that

$$2p(a) \le 2(p(a-1) + p(1)) \le 2p(a-1) + 2p(1) \le 2r + 2p(1)$$

name c = 2, d = 2p(1). Then the families are cr + d disjoined. Since r was chosen arbitrarily and c, d are constants from the definition of asymptotic Assouad - Nagata dimension we have $asdim_{AN}(\mathbb{Z}, d) \leq 1$.

From a previous proposition ([2.12]) $asdim_{AN}(\mathbb{Z}, d) \geq 1$ which concludes the proof.

Proposition 3.5. Suppose that $p : \mathbb{R} \to \mathbb{R}^+$ is a decreasing norm. Then the induced metric on \mathbb{Z} is not proper.

Proof. Suppose that the induced metric was proper. Consider the ball $B(x, p(r)) = \{y \in \mathbb{Z} : p(x-y) < p(r)\}$. Since p is decreasing we have that $B(x, p(r)) \supseteq A = \{y \in \mathbb{Z} : |x-y| > r\}$. But $B_1(x, p(r))$ is compact. Since it is a metric space

 $B_1(x, p(r))$ is bounded and thus finite since the metric is proper and \mathbb{Z} is discrete. On the other hand A is clearly infinite. Contradiction.

Remark 3.6. Since we only deal with proper norms we can now say that our norm is monotone and mean that it is increasing.

Corollary 3.7. Suppose that $p : \mathbb{R} \to R^+$ is a norm which is constant in \mathbb{Z} (and 0 at 0). Then the induced metric is not proper.

Proof. Let p(x) = d for all $x \neq 0$ in \mathbb{Z} . Then the ball $B(0, 2d) = \mathbb{Z}$, is infinite and thus the norm cannot be proper.

References

- N.Brodskiy, J.Dydak, U.Lang Assouad-Nagata dimension of wreath products of groups, arXiv:math/0611331.
- [2] A.N.Dranishnikov, J.Smith On Asymptotic Assound-Nagata Dimension, arXiv:math/0607143v1
- [3] J.Dydak, J.Higes Asymptotic cones and Assound-Nagata dimension arXiv:math/0610338.
- N.Brodskiy, J.Dydak, M.Levin, A.Mitra Hurewicz Theorem for Assound-Nagata dimension arXiv:math/0605416
- [5] N.Brodskiy, J.Dydak, M.Levin, A.Mitra Nagata-Assouad dimension via Lipschitz extensions arXiv:math/0601226
- [6] J.Higes Assouad-Nagata dimension of locally finite groups and asymptotic cones arXiv:0711.1512.
- [7] J.Roe Lectures On Coarse Geometry University Lecture Series, 31. American Math- ematical Society, Providence, RI, 2003