
ASSOUAD NAGATA DIMENSION ON THE INTEGERS

1. Basic Facts and Definitions

Definition 1.1. A metric space X is said to be of Assouad-Nagata dimension ≤ n,
i.e. dimANX ≤ n, iff there exists a constant c so that ∀ r > 0 we can construct
a cover U = {U0, U1, . . . , Un} of X such that each Ui is r-disjoint and uniformly
bounded by cr.

Definition 1.2. A metric space X has Assouad-Nagata dimension = n if
dimANX ≤ n is true and dimANX ≤ n− 1 is false.

Remark 1.3. Three points:
(i) Each Ui is a family of sets.
(ii) r-disjoint means that any two disjoint sets in Ui have distance at least r.
(iii) A family of sets is called uniformly bounded by D if every set of the family

has diameter less than D

Definition 1.4. For different values of r the map Dn
x : R+ → R+ defined by

Dn
x (r) = cr which gives the bound of the diameters is formally called an n-

dimensional control function. In Assouad Nagata dimension the n-dimensional
control function is a dilation.

Definition 1.5. A bi-Lipschitz function f : (X, dX) → (Y, dY ) satisfies the prop-
erty

µdX(x, y) ≤ dY (f(x), f(y)) ≤ λdX(x, y)
for some µ, λ > 0.

Proposition 1.6. Suppose that X and Y are metric spaces and that dimANX ≤ n.
If f : X → Y is bi-Lipschitz and onto then dimANY ≤ n.

Let U a covering of X. Use f(U) to create a covering of Y .

Remark 1.7. dimAN is bi-Lipschitz invariant.

Proposition 1.8. For a metric space (X, d), the following are equivalent:
(i) dimANX ≤ n
(ii) ∃ c1 such that ∀ r > 0, ∃ a cover Ur of X with r-multiplicity at most n + 1

and mesh at most c1r.
(iii) ∃ c2 > 0 such that ∀r > 0, ∃ a cover Vr of X with multiplicity at most

n + 1, mesh at most c2r and Lebesque number at least r.

For the proof of the above see [7]

Definition 1.9.
- mesh(Ur) = sup{diam(A)|A ∈ UR}
- multiplicity(Ur) = max{#Ai ∈ Ur, such that ∩i Ai 6= ∅}
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- r −multiplicity(Ur) = max{#Ai intersecting a ball, Br(x)}
- Lebesque number(Ur) = inf{sup{dist(x,X − U) : U ∈ Ur} : x ∈ X}

Proposition 1.10. If X = A ∪B, then dimANX ≤ max{dimANA, dimANB}.
The proof is really straight forward.

Definition 1.11. A metric space X is said to be of asymptotic Assouad-Nagata
dimension n, i.e. asdimANX = n, if n is the smallest natural number for which
∃ c, d constants such that ∀r > 0 there exists a cover U = {A0, A1, . . . , An} of X
such that each Ai is a family of r-disjoint sets and diam(Aij

) ≤ cr + d,

Remark 1.12. In asymptotic Assouad-Nagata dimension the dimension control
function is linear and not just a dilation.

Proposition 1.13. For a discrete metric space X, asdimANX = dimANX. In par-
ticular, if X is a finitely generated group with the word metric, then asdimANX =
dimANX.

For a detailed proof of the above see [5]

2. Finitely Generated Groups as Metric Spaces

Definition 2.1. Let G =< S|R >, |S| < ∞. Define the following word norm on
G:

||x|| = min{l(w) x = w = si1si2 . . . sik
sij ∈ S}

where k = l(w) is the length of the word w.

Definition 2.2. Define the word metric on G by dw(x, y) = ||x−1y||.
Proposition 2.3. dw is left G-invariant, dw(x, y) = dw(gx, gy).

Proof.

dw(gx, gy) = ||(gx)−1gy|| = ||x−1g−1gy|| = ||x−1y|| = dw(x, y)

¤
Proposition 2.4. (G, dw) is a discrete metric space.

Proof. dw(x, y) ∈ Z. ¤
Corollary 2.5. With dw, asdimANG = dimANG.

Proposition 2.6. If G is finitely generated and diam(G) < M then G is finite.

Proof. For any g ∈ G, ||g|| ≤ M . If |S| = k then |G| ≤ (2k)M . ¤
Proposition 2.7. If G is finitely generated and diam(G) < M then asdimANG =
0.

Proof. Let U0 = G. Consider c = 1, d = M . Then for all r > 0, U0 is a cover of G,
U0 is trivially r-disjoint, and diam(U0) ≤ Dn

x (r) = 1r + M . ¤
Corollary 2.8. If G is finitely generated and diam(G) < M then dimANG = 0.
See 1.13.

Proposition 2.9. If G is finite then asdimANG = dimANG = 0.

Proof. Let A0 = G. ¤
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Proposition 2.10. If asdimANG = 0, and G finitely generated, then G is finite.

Proof. Let r ≥ 1 and consider the appropriate covering. Let G ⊂ U0 = {A0, A1, . . .}.
|A0| = k < ∞ because, diam(A0) ≤ c1 + d = c + d. As a result, if A0 ⊃ G, then
G is finite, as desired. Assuming that this is not the case, there exist x ∈ A0 and
s ∈ S ∪ S−1 such that xs 6∈ A0. If xs ∈ An, then we have that A0 and An are at
most 1-disjoint, contradiction. Thus, U0 = {A0} and G is finite. ¤
Definition 2.11. A map ‖ · ‖G : G → R is said to be a proper norm if it satisfies
the following conditions:

i) ‖g‖G = 0 if and only if g is the neutral element in G.
ii) ‖g‖G = ‖g−1‖G for every g ∈ G.
iii) ‖g · h‖G ≤ ‖g‖G + ‖h‖G for all g, h ∈ G
iv) For every k > 0 the number of elements in G such that ‖g‖G ≤ k is finite.

Proposition 2.12. Suppose G is an infinite, finitely generated group with a proper
norm. Consider d : G×G → R+ the induced metric. Then asdimAN (G, d) > 0.

Proof. Assume not. Let

k = min{||si||; si ∈ S ∪ S−1}
Let r = k + 1. Then there exists a cover of G containing only one family of sets,
U = {A}, with A = {A1, A2, . . .}. Suppose Ai ⊃ G for some i. Then diam(G) ≤
diam(Ai) ≤ D. Since G is discrete G has to be finite. Contradiction. Thus G is
not fully contained in any of the Ai’s. In particular G is not contained in A1. So
there exists some x ∈ A1 with xs 6∈ A1 where s ∈ (S ∪ S−1). Then, if xs ∈ Aj , A1

and Aj are at most k-disjoint, and so they are not r-disjoint. Contradiction. ¤
Remark 2.13. Since Z =< 1 > is an infinite, free group, with one generator,
from the proposition above we have that asdimAN (Z, dw) 6= 0. Further, we would
like to know precisely the asdimANZ. That result is an immediate corollary of the
following theorem.

Theorem 2.14. If T is a tree then asdimANT ≤ 1.

Proof. Fix e to be the origin of the tree. Let d > 0. Consider Ak = {x ∈ T : kd ≤
d(x, e) < (k + 1)d} the “Annulus” of radius (kd, (k + 1)d) for all k ∈ N Consider
the Gromov product on the tree with e as base point:

(x|y) =
1
2
(d(x, e) + d(y, e)− d(x, y))

Define the relation:
x ∼ y ⇐⇒ (x|y) ≥ (k − 1

2
)d

Recall that the Gromov product on the tree satisfies the relation:

(x|y) ≥ min{(x|z), (y|z)}
since the tree is 0-hyperbolic. This proves that the relation is transitive. The
other two properties are trivial thus we have an equivalence relation. Let Ui,k the
equivalence classes in Ak. Name:

U0 = {Ui,k, i ∈ Ik, k ∈ N even}
U1 = {Uj,k, j ∈ Jk, k ∈ N odd}

¤
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These families are d-disjoined. We will prove it for U0 and the proof is similar
for U1. Let U1,k, U2,l be two sets of U0. If k 6= l then clearly

d(U1,k, U2,l) ≥ d(Ak, Al) = |k − l|d
and since k 6= l we have |k − l| ≥ 1 since both are integers. Thus d(U1,k, U2,l) ≥ d.
If k = l then since U1,k and U2,l are different components of the relation we have
the following: For every x ∈ U1,k and y ∈ U2,l (x|y) < (k − 1

2 )d) thus

−2(x|y) > −2kd + d

so:

d(x, y) = d(x, e) + d(y, e)− 2(x|y)
> kd + kd− 2kd + d

= d

This proves that U1,k and U2,l are d-disjoined. They are also 3d-bounded. Let
x, y ∈ U1,k. Then (x|y) ≥ (k − 1

2 )d ⇒ −2(x|y) ≤ −2kd + d but then d(x, y) =
d(x, e) + d(e, y) − 2(x|y) ≤ (k + 1)d + (k + 1)d − 2kd + d = 3d. Clearly the two
families cover the tree so from the definition of the Assouad-Nagata dimension we
have that asdimAN ≤ 1.

Corollary 2.15. With dw, asdimANZ = 1

Proof. By the previous proposition, asdimAN (Z, dw) ≥ 1 and by our theorem,
asdimAN (Z, dw) ≤ 1 so asdimAN (Z, dw) = 1. ¤

3. Monotone norms on Z

Remark 3.1. Thus far, we have restricted our investigation to the norm that is
most natural to apply to finitely generated groups. However, this restriction has
been self-imposed and there is no technical reason to avoid other types of norms.
We now generalize our results for proper, monotone norms.

Lemma 3.2. If p : R → R+ is an increasing function then B1(x, p(t)) = B2(x, t)
for all x ∈ R and t ∈ R+ where B1(x, p(t)) = {y ∈ Z : p(x − y) ≤ p(r)} and
B2(x, t) = {y ∈ Z : |x− y| ≤ r}.
Proof. Notice that y ∈ B1(x, p(r)) ⇔ p(x− y) ≤ p(r). Since p is increasing we get
p(x− y) ≤ p(r) ⇔ |x− y| ≤ r. Clearly |x− y| ≤ r ⇔ y ∈ B2(x, r). Combining the
above we have the wanted inclusions.

¤

Lemma 3.3. If p : R→ R+ is increasing then the families:

U0 = {B1(4kt, p(t)) : k ∈ Z}
U1 = {B1((4k + 2)t, p(t)) : k ∈ Z}

are p(t)-disjoined and 2p(t)-bounded, where B1(x, s) as the previous lemma. Fi-
nally, they form a cover of Z.

Proof. From the previous lemma we have that:

U0 = {B2(4kt, t) : k ∈ Z}
U1 = {B2((4k + 2)t, t) : k ∈ Z}
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Clearly U0 and U1 cover Z. Given a ∈ Z, there exists an integer k such that
4kt ≤ a < 4(k+1)t. Then, either 4kt ≤ a < 4kt+t and a ∈ B2(4kt, t), (4k+2)t−t ≤
a < (4k + 2)t + t and a ∈ B2((4k + 2)t, t) or 4(k + 1)t − t ≤ a < 4(k + 1)t so
a ∈ B2(4(k + 1)t, t).

Also they are 2p(t)-bounded since:

diam(B1(4kt, p(t))) ≤ 2p(t)

Finally it is easy to show that U0 and U1 are p(t)-disjoined. We will prove it for U0

and the proof is the same for U1. Let B1(4k1t, p(t)) and B1(4k2t, p(t)) with k1 6= k2

such that they are not p(t)-disjoined. Then, since both of them are compact, there
exist x ∈ B1(4k1t, p(t)) and y ∈ B1(4k2t, p(t)) such that p(|x − y|) < p(t). Since
p is increasing we get |x− y| < t. But then

|4k1t− 4k2t| ≤ |4k1t− x|+ |x− y|+ |y − 4k2t| (A)

Since x ∈ B1(4k1t, p(t)) we get x ∈ B2(4k1t, t) and thus |x− 4k1t| ≤ t. Similarly
|y − 4k2t| ≤ t. Thus (A) becomes:

|4k1t− 4k2t| ≤ 3t

which leads to |k1−k2| ≤ 3
4 . Since k1, k2 ∈ Z we have k1−k2 = 0 and thus k1 = k2

which is a contradiction. Thus U0 is p(t)-disjoined.
¤

Proposition 3.4. Suppose p : R → R+ is an increasing, proper, non-bounded
norm. Consider the induced metric d : Z× Z→ R+:

d(x, y) = p(|x− y|)
Then asdimAN (Z, d) = 1

Proof. Let r > 0. Since p is not bounded there exists an a ∈ Z such that p(a−1) ≤
r and p(a) ≥ r. Consider the two families

U0 = {B1(4ka, p(a)) : k ∈ Z}
U1 = {B1((4k + 2)a, p(a)) : k ∈ Z}

From the previous lemma we have that the U0, U1 are a covering of Z. Also they
are p(a)-disjoined. Since p(a) ≥ r they are also r-disjoined. Finally they are 2p(a)-
bounded. Notice that

2p(a) ≤ 2(p(a− 1) + p(1)) ≤ 2p(a− 1) + 2p(1) ≤ 2r + 2p(1)

name c = 2, d = 2p(1). Then the families are cr + d disjoined. Since r was
chosen arbitrarily and c, d are constants from the definition of asymptotic Assouad
- Nagata dimension we have asdimAN (Z, d) ≤ 1.

From a previous proposition([2.12]) asdimAN (Z, d) ≥ 1 which concludes the
proof.

¤

Proposition 3.5. Suppose that p : R → R+ is a decreasing norm. Then the
induced metric on Z is not proper.

Proof. Suppose that the induced metric was proper. Consider the ball B(x, p(r)) =
{y ∈ Z : p(x − y) < p(r)}. Since p is decreasing we have that B(x, p(r)) ⊇ A =
{y ∈ Z : |x − y| > r}. But B1(x, p(r)) is compact. Since it is a metric space
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B1(x, p(r)) is bounded and thus finite since the metric is proper and Z is discrete.
On the other hand A is clearly infinite. Contradiction. ¤
Remark 3.6. Since we only deal with proper norms we can now say that our norm
is monotone and mean that it is increasing.

Corollary 3.7. Suppose that p : R→ R+ is a norm which is constant in Z (and 0
at 0). Then the induced metric is not proper.

Proof. Let p(x) = d for all x 6= 0 in Z. Then the ball B(0, 2d) = Z, is infinite and
thus the norm cannot be proper. ¤
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